SuSE: Subspace Selection embedded in an EM algorithm
نویسندگان
چکیده
Le subspace clustering [Parsons et al. (2004)] est une extension du clustering traditionnel [Berkhin (2002)] qui recherche un ensemble de clusters qui peuvent être définis dans différents sous-espaces. C’est le cas, par exemple, des données présentées dans la figure 1. L’intérêt de telles techniques est important dans le cadre de données contenant un nombre important de dimensions car elles permettent de faire face à la malédiction de la dimensionalité. De plus, elles permettent de fournir une description réduite des clusters obtenus car les clusters sont alors définis par un nombre restreint de dimensions. Or, la problématique de la compréhensibilité des résultats obtenus en clustering est également importante.
منابع مشابه
A Gaussian Mixture Model to Detect Clusters Embedded in Feature Subspace
The goal of unsupervised learning, i.e., clustering, is to determine the intrinsic structure of unlabeled data. Feature selection for clustering improves the performance of grouping by removing irrelevant features. Typical feature selection algorithms select a common feature subset for all the clusters. Consequently, clusters embedded in different feature subspaces are not able to be identified...
متن کاملIdentification of errors-in-variables models using the EM algorithm ⋆
This paper advocates a new subspace system identification algorithm for the errorsin-variables (EIV) state space model via the EM algorithm. To initialize the EM algorithm an initial estimate is obtained by the errors-in-variables subspace system identification method: EIV-MOESP (Chou et al. [1997]) and EIV-N4SID (Gustafsson [2001]). The EM algorithm is an algorithm to compute the maximum value...
متن کاملSpeech Enhancement Through an Optimized Subspace Division Technique
The speech enhancement techniques are often employed to improve the quality and intelligibility of the noisy speech signals. This paper discusses a novel technique for speech enhancement which is based on Singular Value Decomposition. This implementation utilizes a Genetic Algorithm based optimization method for reducing the effects of environmental noises from the singular vectors as well as t...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملSpeech Modelling Using Subspace and EM Techniques
Tony Robinson Cambridge University Engineering Department Cambridge CB2 IPZ England [email protected] The speech waveform can be modelled as a piecewise-stationary linear stochastic state space system, and its parameters can be estimated using an expectation-maximisation (EM) algorithm. One problem is the initialisation of the EM algorithm. Standard initialisation schemes can lead to poor forma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006